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BOUNDARY CONDITIONS FOR THE HEAT- AND MASS- 

TRANSFER EQUATIONS OF COARSELY DISPERSE AEROSOLS 

IN A TURBULENT FLOW 

I. V. Derevich and V. M. Eroshenko UDC 532.529 

Boundary conditions taking account of particle interaction with the boundary 
surface are obtained on the basis of the Chapman-Enskog method of solving the 
kinetic equation. 

In the turbulent flow of coarsely disperse aerosols in channels, the dynamic relaxation 
time of the particles considerably exceeds the lifetime of the energy-content pulsations of 
the carrying flux. In this case, processes occurring in the interaction of the discrete 
phase with the surface exert a significant influence on the dynamic and thermal characteris- 
tics of the disperse flow. In calculations of the turbulent disperse flows, the collision 
of particles with the walls is taken into account by formulating the corresponding boundary 
conditions for the hydrodynamic and heat- and mass-transfer equations. In [1-4], the bound- 
ary condition for the concentration of Brownian particles at a partially absorbing surface 
was constructed. The boundary concentration for the concentration of disperse impurity in 
the turbulent flow, taking account of inhomogeneity of the turbulent-pulsation field, the 
mass force, and the degree of particle entrainment in the turbulent motion, was found in 
[5]. The boundary conditions of [i-5] are conditions of the third kind for the particle- 
diffusion equations and relate the concentration value and its gradient at the surface. The 
distinguishing feature of these boundary conditions is the nonzero particle concentration at 
an absolutely absorbing wall. 

The distribution of the pulsational characteristics of inertial particles in an inhomo- 
geneous turbulent flow is determined by the ratio between the scale of inhomogeneity of the 
pulsational field of the carrier phase and the pulsational inertial path length of the parti- 
cle s = Tu aI/2 [6, 7]. If the inertial path length of the particle is comparable with the 
characteristic scale of inhomogeneity of the turbulent pulsations of the fluid phase close 
to the channel wall, the intensity of pulsational motion of the discrete phase in the wall 
region is determined by the pulsational energy of the particle acquired in the flow core. 
In this case, the intense turbulent motion of particles around the wall leads to effective 
turbulent transfer of the mean flow characteristics (axialvelocity, temperature) from the flow 
core to the surface. The description of such flow must be based on the two-velocity andtwo-tempera- 
ture approximation, when the equations for the particle velocity and temperature are used together 
with the equations for the mean velocity and temperature of the carrier phase. On account of the 
intense transverse turbulent transfer in the solid phase between the flow core and the wall 
region, the equations for the mean characteristics of the discrete phase are of diffusional 
type. Accordingly, the formulation of boundary conditions taking account of the processes 
occurring at particle contact with surface is an urgent problem. 

In the present work, a closed system of equations and boundary conditions for calculat- 
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ing heat- and mass-transfer processes in the discrete phase is constructed on the basis of 
the kinetic equation for the probability density function (PDF) of the particle distribution 
with respect to the coordinate, velocity, and temperature. 

Consider the turbulent flow of a disperse flux with a small volume concentration of 
particles, when interaction between the particles may be neglected. The equations for the 
velocity, coordinate, and temperature of the p-th particle take the form 

dVv~ -- I--L (ui (Rp (T), ~) - -  Vm) , dRp.: = Vpi; 
dx T~ dT 

(1) 
de__~p _-- 1 (T(R,(~) ,  T) - e p )  
dT T 0 

For c o a r s e l y  d i s p e r s e  a e r o s o l s ,  Xu, tO >> TE (XE i s  the  macroscopic  t ime s c a l e  of  t u r -  
bu l ence ) .  In t h i s  case ,  the  t u r b u l e n t  p u l s a t i o n s  of  the  v e l o c i t y  u i ( x ,  x) and t empera tu re  
t(x~, x) may be approximated by a random Gaussian process  which i s  8 - c o r r e l a t e d  in t ime.  Us- 
ing the method in [8], a closed equation for the PDF of the particles @(x:, V, 0, T) is ob- 
tained 

Oq) O(D I 0 
a-N- + v~ ~ + --~,~ --oG [( < G > - v~) ~]  + 

+ 1 a [(<T>--O)O]= ~s a ~  
T~ a--d- T--~,, < u,u~ > ~ - +  OVIOV~ 

T._~_E a~(p 2T e azct) 
+ < t~ >-==- + <tu~>- Tg O@z "roTu OViO@ 

The mean (over  the  ensemble of  t u r b u l e n t  r e a l i z a t i o n s )  c o n c e n t r a t i o n ,  v e l o c i t y ,  and 
temperature of the discrete phase are defined as follows 

<N(x, T)>==I'dV fdOCD, < N ) < V ( x ,  ~ ) ) = ~ d V  ;dOVCP, 
- - ~  - - o o  

< N > < e (x, ~)> = ,I av S aoe* .  

After introducing the variables x, v i = V i - <Vi> , @ = @ - <@>, 
form 

(2) 

x, Eq. (2) takes the 

D(D D < V~ > Ocl) D < O > O(D O(I) 
DT DT Ovi DT 0~-  + vh ~ q- Oxh 

+ < U h > - - < V h >  a(1) + < T > - - < @ >  -0_._.0_~ 

z~ Ovh x o O0 

a<Vi> a~ a<@> a@ 
- - V h  V h - - - -  

Oxh av~ axh ao 

--( l--8~h) -- - -  
0 a ~ h o~q) 2 a~ 0~@ 

% Ov,Ovh (%To) ~'2 aviaO 
- -  = L ( I ) ,  (3) 

1 
L 

T, u 

O a~ 0 2 l 0 a ~ c)~ 

D O -~ < Vh > O o T~ 
D ~  -- aT Ox----~ ; (Y~i ~ "v---~- < ufui > , 

T E T E ,,~=-TT<t,>, o%--(T.n),/, <t.,>. 
After integrating Eq. (3) over the space of velocities and temperatures, and then mul- 

tiplying Eq. (3) by vi, @, v i vj, @ 2 , 8v i and integrating over the space of velocities and 
temperatures, a system of equatlons for the mean concentration, velocity, and temperature 
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and the second moments of the velocity and temperature pulsations of the discrete phase is 

O<N> 
written 

t---~x * <V,> <N>=~O; 

0 V~> + < V ~ >  O<V~> + 1  O<N> (%v~>_ < U i > - - ( V , i > .  

0<0> 0 ( 0 >  1 O<N> (~> < T > - - < O >  
- -  + .< V~ > - - . +  - -  

0"~ Ox~ < N > Ox~ ~o 

O < vivi ) + ( V ~ >  O < vtvs > + 1 _ _  O < N > < vivsvh > + 
OT Ox~ <N> Oxk 

+ < v~vk > o < V~ > + < vjvk > o < v~ > = _ 2  ( ~ i - -  < v~v~ > ); 
Ox~ OX~ ~u 

(4) 

(5) 

(6) 

(7)  

0<82> 0<@z> Vk> + 1 O<N> <vh0a'> ,-b2(0vh> 0 ( O >  2 o 0~ 
�9 - -  , - - -  (~0--< >); 

Oxh ( N > Oxh Oxh "% 

O<Ovl) q-<Vk)  O<Ovi> + 1 O<N> <Ov~vh> -k (8) 
Oxk < N > Oxh 

+(Ooh} O<V~) - [ - ( v ~ v k ) a ( @ >  _ 2a7o (__1_1 _ 1 ) ( o v a )  " 
Oxh Oxh (%~o) ~/2 % ~o (9)  

The system in Eqs. (4)-(9) is not closed, since moments of higher order appear in the 
equations for the first and second moments of the pulsations of the discrete-phase charac- 
teristics. To close this system and specify the boundary conditions, Eq. (3) is solved by 
approximate methods developed in statistical physics, for example, the Chapman-Enskog 
method [9]. Note that the operator L on the right-hand side of Eq. (3) describes the in- 
teraction of particles with turbulent moles of the carrier flow and is analogous in meaning 
to the collision operator in the kinetic theory of gases. In the present case, the free 
path length of the particles is proportional to the distance covered by the particle be- 
tween collisions with turbulent moles s ~ XE(<U2> I12 -- <v2>i12). For small particles (x << 
XE), <vZ> + <u2> and s § 0, i.e., the small particles trace the trajectory of the turbulent 
mole. Inertial particles (z >> ~E) are entrained by the pulsational motion of the carrier 
phase to a lesser extent: <v2> << <u=>; in this case, s ~ ZE<U2> z/2 ~ s (s is the spatial 
integral scale of turbulence). The Chapman-Enskog method is applicable to systems with 
small gradients of the mean flow parameters. For disperse turbulent flows with inertial 
particles, as indicated by experimental data [10-12], weak variation in the solid-phase 
parameters over the channel cross section is observed. Within the framework of the given 
assumptions, the solution of Eq. (3) is sought in the form 

@ = ~o + O1 + ..., 

where the first correction ~z is linear in the gradient of the mean flow parameters and 
satisfies the normalization conditions 

(10) 

The zero approximation ~0 is the kernel of the operator of particle collision with 
t u r b u l e n t  moles and takes  the  form 

Ltgo=O, *o- -  <N--> exp[ v~v~ 0 2 ] 
A 2(Yii 2o0 ' 

3 

A = (2~%) ~/2 I I  (2n~.) ~/2, 
i ~ I  

on=<vlva>, %=<02> 

(11) 
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Closing the system in Eqs. (4)-(9) on the basis of the zero approximation in Eq. (ii) 
and expressing the time and spatial derivatives of ~0 by means of the closed (in the first 
approximation with respect to the PDF) system in Eqs. (4)-(9), the equation for the first 
correction is obtained 

@TIL@I = ~ (v.iv h __ 6ikv 2) a < V i > (1 -- 8i~) ~ vzv------------A--~ + 
(Yii Ox~ 'v u tYiio~ 

+ f  0<~ vh vi 6~ + G~ 
+ ~ 2ou Ox~ o ~ s  o Ox~, 

2an~ ] v~ ( OZ ) O a ~  - - - - I  
(T~,Xo) ' /~ + 2% o~ ax~ 

Integrating Eq. (12) with the normalization conditions in Eq. (I0), the first correc- 
tion is found in the form 

@~=@oJ ai,+ (l_6ik) v~vk T,+ O V~ 
a.~k~ 2 ~ .  (v~vh-- 8ihv~) <axh ) t 2  

3 %+ 20"ii ] OX k + 
+ (  1 + 1 ) -1 v~O [ 2O'io O<O>] 

T~, To ~h~o (*~To) 1/~ ,rh~ a x ~  

)-, o o o t . _ _  +o _,  
" z+ ~o axk j 

Using the expression for r the turbulent-stress tensor, the heat-flux vector, the 
pulsational energy-flux vector, and the intensity of the temperature pulsations arising as 
a result of particle interaction with turbulent modes of fluid phase are calculated 

(13) 

�9 , , <N>  a .  + ~ z  6 ~ u  �9 ; 
2 ax~ Oxj 3 axj 

0 0  

<X> (vi0> = . [d r  J'dOoi001= 

+ ,)- ,{  2~ o<0> 1 
T~ To (T~XO) 1/2 " a u - -  ; OX~ ( 16 ) 

(14) 

(15) 

<w> - ~  : ~ ah~ (~k + 2 ~ . ) - - a x k  < N > ; 

<N + ( 1 2 ) a(~s < v~0 ~. > f dv I a0v~e2ml < N > + ---- = ~h-- (17) 
J _~d Tu ~0 0Xh 

It follows from Eqs. (5)-(8) and (14)-(17) that the equations for calculating the mean 
velocity and temperature of the discrete phase and the equations for the square of the ve- 
locity and temperature pulsations of the particles are of parabolic (diffusional) type. To 
obtain the boundary conditions for the correspondingbalance equations of the mean and pul- 
sational characteristics of the discrete phase, the sum of the fluxes of the chosen charac- 
teristic in the flow and close to the boundary surface is found [13]. 

The PDF of the particles close to the wall is now written in the boundary-layer approx- 
imation 8<Vx>/3y >> 8<Vx>/Sx (the y-axis is directed along the normal to the surface; the 
x-axis coincides wit~ the direction of flow) 
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T, u 

gO(x, v, O, z) = Oo ! l + Y,~u v~v~ __ 

t (Txx(Tyy 

( ,)]o.+ v u vi 6iu + 2uo - -  
ffii 2dii - -2  Oy 

vuO 
%~,Oo 

1 

where i t akes  the  va lues  x, y,  z. 
written in the form 

(i8) 

o % O < V~ > 
Y'xy = ~ x y -  (~uy 

2 Oy 

_~ 1 ) - l [  2%0 0 < 0 >  .] 
tO  (TuTO) 1 / 2 (Tyy Oy ' 

The PDF of the particles reflected from the surface is 

e+ (x, v', o', "0 = S av [do o(v, v'; o, o' )e(x,  v, o, "0, 
- - o o  

Vy~O. (19) 

The function ~ in Eq. (19) describes the particle interaction with the surface. Sup- 
pose that, as a result of particle collision with the wall, the momentum of the particles 
reflected in the i-th direction amounts to a fraction K i (0 -< K i <_ i) of the total momentum 
of the incident particle. On account of the thermal contact of the incident particle with 
the surface at a temperature <Tw >, there is conductive heat transfer between the particle 
and the wall; the temperature of the particle reflected from the wall changes by an amount 
a(<Tw > -- O) (@ is the temperature of the incident particle). In view of the foregoing, the 
kernel of the transformation in Eq. (19) takes the form 

,~ (V, V'; O, O') = a (<  -- s~V~) a (V~ + s~Vy) X 
(20) 

• 8 (V~-- • 8 (O ' - -  o~ < T~o > - - (1  - -  cz) O). 

In Eq. (20), it is taken into account that, in particle collision with the wall, the 
direction of particle motion is constant with respect to the x and z axes. The PDF of the 
reflected particles is obtained from Eqs. (19) and (20) 

@+(x, v', 0', "~)-- l { vlv~ 0 '= } 
•215 exp --  2 2Si (Yii 2~G 8 X 

,2 

+ v u 3 O%u v~ 
2 2 2S2 ffylt 2 - - - ~  @ 1 , 2S3Ozz 09 J 

(21) 

where v i = V  i - x i < V i > ,  i =  1,3; v i = V  u + •  0 ' ~ O - - •  < T ~ ) ,  s o =  I - - ~ .  

Using Eqs. (18) and (21) ,  the  i n c i d e n t  and r e f l e c t e d  p a r t i c l e ,  momentum, and hea t  
fluXes are calculated, as well as the fluxes of the square of the discrete-phase velocity 
and temperature. Equating the total incident and reflected fluxes, a system of boundary 
conditions for the numerical concentration, mean velocity, and temperature of the particles 
and the square of the pulsations of the normal velocity and temperature component of the dis- 

( 2~u u )1/2 1--• 
1-{ -x  2 

<V~> = <U~> 

1 - -  Z I X  2 

(Vy > ~- 1 -]- XlX~ 

N> ---- < V,j > <N>, 

% a%v < N > 
< N> ay 

(22) 

(23) 

crete phase is written 
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( < 0 ) -- < Tu, > ) =--Eyo, (24) <Vu)+ I •215 ,/2 

1 q- ~ quy = ~~ aN , (25) 

I q- •215 ~ ("-~-~, q- "-~-o- o'yy --~--. (26) 

The boundary conditions of the third kind in Eqs. (22)-(26) relate the values of the 
desired functions and their gradients at the surface. On account of the inertia of the 
particles, the pulsational characteristics of the disperse phase, unlike those of the fluid 
phase, are not zero at the boundary surface. Note that, at an absolutely absorbing sur- 
face (K i = 0), the particle concentration and the mean velocity of the solid phase are non- 
zero. As is evident from Eq. (24), the inertial particle transfer to the wall means that 
the temperature of the discrete phase at the surface is not <Tw> even when the particles 
reflected from the surface leave in the flux at the surface temperature (~ = I, K 0 - 0). In 
the case of an absolutely reflecting surface (K i = ~0 ,= i), there is no particle flux (<Vy> = 
0), momentum flux (Exv = 0), or heat flux (ly8 = 0); likewise, the intensity flux of the 
velocity pulsations Oyy~OO/Sy = 0 and the square of temperature pulsations OyySO@/Sy = 0 

for the solid phase at the wall. 

Thus, the system in Eqs. (4)-(9), together with Eqs. (14)-(17) and the boundary condi- 
tions in Eqs. (22)-(26), represents a closed description of the hydrodynamics and heat and 
mass transfer in turbulent fluxes of inertial particles. 

NOTATION 

Tu, T0, dynamic and thermal relaxation times of particles; oij, second moment of veloc- 
ity pulsation of discrete phase; v~(~), Rp(T), @p(~) , actual velocity, coordinate, and tempera- 
ture of p-th particle; U(x:, T), T(x, ~), actual velocity and temperatures of carrier flow; 
rE, time scale of turbulence; r v, 0, ~), probability density function of particle distri- 
bution with respect to the coordinate, velocity, and temperature; <U>, u(x,T),<T>.t(x.~) , mean 
and pulsational components of carrier-phase velocity and temperature;<v(x,~)>.v,<O(x.~)>,0 mean 
and pulsational components of the discrete-phase velocity and temperature; Ki, recovery co- 
efficient of particle momentum in impact at wall; N, number of particles in flow volume. 
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